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Guidelines for Writing FPU 
Exception Handlers 35

As described in “Floating-Point Unit”, the Intel Architecture supports two mechanisms for 
accessing exception handlers to handle unmasked FPU exceptions: native mode and MS-D
compatibility mode. The primary purpose of this appendix is to provide detailed information t
help software engineers design and write FPU exception-handling facilities to run on PC sys
that use the MS-DOS compatibility mode1 for handling FPU exceptions. Some of the informatio
in this appendix will also be of interest to engineers who are writing native-mode FPU excep
handlers. The information provided is as follows:

• Discussion of the origin of the MS-DOS* FPU exception handling mechanism and its 
relationship to the FPU’s native exception handling mechanism.

• Description of the Intel Architecture flags and processor pins that control the MS-DOS FPU 
exception handling mechanism.

• Description of the external hardware typically required to support MS-DOS exception 
handling mechanism.

• Description of the FPU’s exception handling mechanism and the typical protocol for FPU
exception handlers.

• Code examples that demonstrate various levels of FPU exception handlers.

• Discussion of FPU considerations in multitasking environments.

• Discussion of native mode FPU exception handling.

The information given is oriented toward the most recent generations of Intel architecture 
processors, starting with the Intel486. It is intended to augment the reference information given in 
Chapter 7, Floating-Point Unit.

A more extensive version of this appendix is available in the application note AP-578, Software 
and Hardware Considerations for FPU Exception Handlers for Intel Architecture Processors 
(Order Number 242415-001), which is available from Intel.

35.1 Origin of the MS-DOS* Compatibility Mode for 
Handling FPU Exceptions

The first generations of Intel Architecture processors (starting with the Intel 8086 and 8088 
processors and going through the Intel 286 and Intel386 processors) did not have an on-chip 
floating-point unit. Instead, floating-point capability was provided on a separate numeric 
coprocessor chip. The first of these numeric coprocessors was the Intel 8087, which was followed 
by the Intel 287 and Intel 387 numeric coprocessors. 

1. Microsoft Windows* 95 and Windows* 3.1 (and earlier versions) operating systems use almost the same FPU exception handling interface 
as the operating system. The recommendations in this appendix for a MS-DOS* compatible exception handler thus apply to all three 
operating systems.
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To allow the 8087 to signal floating-point exceptions to its companion 8086 or 8088, the 8087 has 
an output pin, INT, which it asserts when an unmasked floating-point exception occurs. The 
designers of the 8087 recommended that the output from this pin be routed through a 
programmable interrupt controller (PIC) such as the Intel 8259A to the INTR pin of the 8086 or 
8088. The accompanying interrupt vector number could then be used to access the floating-point 
exception handler.

However, the original IBM PC design and MS-DOS operating system used a different mechanism 
for handling the INT output from the 8087. It connected the INT pin directly to the NMI input pin 
of the 8086 or 8088. The NMI interrupt handler then had to determine if the interrupt was caused 
by a floating-point exception or another NMI event. This mechanism is the origin of want is now 
called the “MS-DOS compatibility mode.” The decision to use this latter floating-point except
handling mechanism came about because when the IBM PC was first designed, the 8087 w
available. When the 8087 did become available, other functions had already been assigned 
eight inputs to the PIC. One of these functions was a BIOS video interrupt, which was assign
interrupt number 16 for the 8086 and 8088.

The Intel 286 processor created the “native mode” for handling floating-point exceptions by 
providing a dedicated input pin (ERROR#) for receiving floating-point exception signals and 
dedicated interrupt number, 16. Interrupt 16 was used to signal floating-point errors (also ca
math faults). It was intended that the ERROR# pin on the Intel 286 be connected to a 
corresponding ERROR# pin on the Intel 287 numeric coprocessor. When the Intel 287 signa
floating-point exception using this mechanism, the Intel 286 generates an interrupt 16, to inv
the floating-point exception handler. 

To maintain compatibility existing PC software, the native floating-point exception handling m
of the Intel 286 and 287 was not used in the IBM PC AT* system design. Instead, the ERROR
on the Intel 286 was tied permanently high, and the ERROR# pin from the Intel 287 was rou
a second (cascaded) PIC. The resulting output of this PIC was routed through an exception h
and eventually caused an interrupt 2 (NMI interrupt). Here the NMI interrupt was shared with
AT’s new parity checking feature. Interrupt 16 remained assigned to the BIOS video interrup
handler. The external hardware for the MS-DOS compatibility mode must prevent the Intel 2
processor from executing past the next FPU instruction when an unmasked exception has b
generated. To do this, it asserts the BUSY# signal into the Intel 286 when the ERROR# sign
asserted by the Intel 287.

The Intel386 processor and its companion Intel 387 numeric coprocessor provided the same
hardware mechanism for signaling and handling floating-point exceptions as the Intel 286 an
processors. And again, to maintain compatibility with existing MS-DOS software, basically th
same MS-DOS compatibility floating-point exception handling mechanism that was used in th
AT was used in PCs based on the Intel386.

35.2 Implementation of the MS-DOS* Compatibility Mode 
In the Intel486™, Pentium ®, and Pentium Pro 
Processors

Beginning with the Intel486 processor, the Intel Architecture provided a dedicated mechanism for 
enabling the MS-DOS compatibility mode for FPU exceptions and for generating external FPU-
exception signals while operating in this mode. The following sections describe the 
implementation of the MS-DOS compatibility mode in Intel486 and Pentium processors and in the 
Pentium Pro processor. Also described is the recommended external hardware to support this mode 
of operation. 
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35.2.1 MS-DOS* Compatibility Mode in the Intel486™ and 
Pentium ® Processors

In the Intel486, several things were done to enhance and speed up the numeric coprocessor, now 
called the floating-point unit (FPU). The most important enhancement was that the FPU was 
included in the same chip as the processor, for increased speed in FPU computations and reduced 
latency for FPU exception handling. Also, for the first time, the MS-DOS compatibility mode was 
built into the chip design, with the addition of the NE bit in control register CR0 and the addition of 
the FERR# (Floating point ERRor) and IGNNE# (IGNore Numeric Error) pins. 

The NE bit selects the native FPU exception handling mode (NE = 1) or the MS-DOS 
compatibility mode (NE = 0). When native mode is selected, all signaling of floating-point 
exceptions is handled internally in the Intel486 chip, resulting in the generation of an interrupt 16.

When MS-DOS compatibility mode is selected the FERRR# and IGNNE# pins are used to signal 
floating-point exceptions. The FERR# output pin, which replaces the ERROR# pin from the 
previous generations of Intel Architecture numeric coprocessors, is connected to a PIC. A new 
input signal, IGNNE#, is provided to allow the FPU exception handler to execute FPU instructions, 
if desired, without first clearing the error condition and without triggering the interrupt a second 
time. This IGNNE# feature is needed to replicate the capability that was provided on MS-DOS 
compatibility Intel 286 and Intel 287 and Intel386 and Intel 387 systems by turning off the BUSY# 
signal, when inside the FPU exception handler, before clearing the error condition.

Note that Intel, in order to provide Intel486 processors for market segments which had no need for 
an FPU, created the “SX” versions. These Intel486 SX processors did not contain the floating
unit. Intel also produced Intel 487 SX processors for end users who later decided to upgrade
system with an FPU. These Intel 487 SX processors are similar to standard Intel486 process
with a working FPU on board. Thus, the external circuitry necessary to support the MS-DOS
compatibility mode for Intel 487 SX processors is the same as for standard Intel486 DX proce

The Pentium and Pentium Pro processors offer the same mechanism (the NE bit and the FE
and IGNNE# pins) as the Intel486 processors for generating FPU exceptions in MS-DOS 
compatibility mode. The actions of these mechanisms are slightly different and more 
straightforward for the Pentium Pro processors, as described in “MS-DOS* Compatibility Mod
the Pentium® Pro Processor”.

For Pentium and Pentium Pro processors, it is important to note that the special DP (Dual 
Processing) mode for Pentium Processors and also the more general Intel MultiProcessor 
Specification for systems with multiple Pentium or Pentium Pro processors support FPU exce
handling only in the native mode. Intel does not recommend using the MS-DOS compatibility
mode for systems using more than one processor.

35.2.1.1 Basic Rules: When FERR# Is Generated

When MS-DOS compatibility mode is enabled for the Intel486 or Pentium processors (NE bit 
to 0) and the IGNNE# input pin is de-asserted, the FERR# signal is generated as follows:

1. When an FPU instruction causes an unmasked FPU exception, the processor (in most c
uses a “deferred” method of reporting the error. This means that the processor does not 
respond immediately, but rather freezes just before executing the next WAIT or FPU 
instruction (except for “no-wait” instructions, which the FPU executes regardless of an e
condition). 

2. When the processor freezes, it also asserts the FERR# output.
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3. The frozen processor waits for an external interrupt, which must be supplied by external 
hardware in response to the FERR# assertion. 

4. In MS-DOS* compatibility systems, FERR# is fed to the IRQ13 input in the cascaded PIC. 
The PIC generates interrupt 75H, which then branches to interrupt 2, as described earlier in 
this appendix for systems using the Intel 286 and Intel 287 or Intel386 and Intel 387 
processors. 

The deferred method of error reporting is used for all exceptions caused by the basic arithmetic 
instructions (including FADD, FSUB, FMUL, FDIV, FSQRT, FCOM and FUCOM), for precision 
exceptions caused by all types of FPU instructions, and for numeric underflow and overflow 
exceptions caused by all types of FPU instructions except stores to memory. 

Some FPU instructions with some FPU exceptions use an “immediate” method of reporting e
Here, the FERR# is asserted immediately, at the time that the exception occurs. The immed
method of error reporting is used for FPU stack fault, invalid operation and denormal except
caused by all transcendental instructions, FSCALE, FXTRACT, FPREM and others, and all 
exceptions (except precision) when caused by FPU store instructions. Like deferred error 
reporting, immediate error reporting will cause the processor to freeze just before executing 
next WAIT or FPU instruction if the error condition has not been cleared by that time.

Note that in general, whether deferred or immediate error reporting is used for an FPU excep
depends both on which exception occurred and which instruction caused that exception. A 
complete specification of these cases, which applies to both the Pentium and the Intel486 
processors, is given in Section 5.1.2 in the Pentium® Processor Family Developer’s Manual: 
Volume 1. 

If NE=0 but the IGNNE# input is active while an unmasked FPU exception is in effect, the 
processor disregards the exception, does not assert FERR#, and continues. If IGNNE# is then de-
asserted and the FPU exception has not been cleared, the processor will respond as described 
above. (That is, an immediate exception case will assert FERR# immediately. A deferred exception 
case will assert FERR# and freeze just before the next FPU or WAIT instruction.) The assertion of 
IGNNE# is intended for use only inside the FPU exception handler, where it is needed if one wants 
to execute non-control FPU instructions for diagnosis, before clearing the exception condition. 
When IGNNE# is asserted inside the exception handler, a preceding FPU exception has already 
caused FERR# to be asserted, and the external interrupt hardware has responded, but IGNNE# 
assertion still prevents the freeze at FPU instructions. Note that if IGNNE# is left active outside of 
the FPU exception handler, additional FPU instructions may be executed after a given instruction 
has caused an FPU exception. In this case, if the FPU exception handler ever did get invoked, it 
could not determine which instruction caused the exception. 

To properly manage the interface between the processor’s FERR# output, its IGNNE# input,
the IRQ13 input of the PIC, additional external hardware is needed. A recommended configu
is described in the following section.

35.2.1.2 Recommended External Hardware to Support the 
MS-DOS* Compatibility Mode

Figure 35-1 provides an external circuit that will assure proper handling of FERR# and IGNN
when an FPU exception occurs. In particular, it assures that IGNNE# will be active only insid
FPU exception handler without depending on the order of actions by the exception handler. 
hardware implementations have been less robust because they have depended on the exce
handler to clear the FPU exception interrupt request to the PIC (FP_IRQ signal) before the handler 
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causes FERR# to be de-asserted by clearing the exception from the FPU itself. Figure 35-2 shows 
the details of how IGNNE# will behave when the circuit in Figure 35-1 is implemented. The 
temporal regions within the FPU exception handler activity are described as follows:

1. The FERR# signal is activated by an FPU exception and sends an interrupt request through the 
PIC to the processor’s INTR pin.

2. During the FPU interrupt service routine (exception handler) the processor will need to c
the interrupt request latch (Flip Flop #1). It may also want to execute non-control FPU 
instructions before the exception is cleared from the FPU. For this purpose the IGNNE# 
be driven low. Typically in the PC environment an I/O access to Port 0F0H clears the ext
FPU exception interrupt request (FP_IRQ). In the recommended circuit, this access also
used to activate IGNNE#. With IGNNE# active the FPU exception handler may execute 
FPU instruction without being blocked by an active FPU exception.

3. Clearing the exception within the FPU will cause the FERR# signal to be deactivated and
there is no further need for IGNNE# to be active. In the recommended circuit, the deactiv
of FERR# is used to deactivate IGNNE#. If another circuit is used, the software and circ
together must assure that IGNNE# is deactivated no later than the exit from the FPU exc
handler.
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In the circuit in Figure 35-1, when the FPU exception handler accesses I/O port 0F0H it clears the 
IRQ13 interrupt request output from Flip Flop #1 and also clocks out the IGNNE# signal (active) 
from Flip Flop #2. So the handler can activate IGNNE#, if needed, by doing this 0F0H access 
before clearing the FPU exception condition (which de-asserts FERR#). However, the circuit does 
not depend on the order of actions by the FPU exception handler to guarantee the correct hardware 
state upon exit from the handler. Flip Flop #2, which drives IGNNE# to the processor, has its 
CLEAR input attached to the inverted FERR#. This ensures that IGNNE# can never be active 
when FERR# is inactive. So if the handler clears the FPU exception condition before the 0F0H 
access, IGNNE# does not get activated and left on after exit from the handler.

Figure 35-1. Recommended Circuit for MS-DOS* Compatibility FPU Exception Handling

Intel486,
Pentium®, or
Pentium Pro
processor

FF #1

FF #2

FP_IRQ

Legend:
FF #n    Flip Flop #n
CLR      Clear or Reset
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35.2.1.3 No-Wait FPU Instructions Can Get FPU Interrupt in Window

The Pentium and Intel486 processors implement the “no-wait” floating-point instructions 
(FNINIT, FNCLEX, FNSTENV, FNSAVE, FNSTSW, FNSTCW, FNENI, FNDISI or FNSETPM
in the MS-DOS compatibility mode in the following manner. (See “FPU Control Instructions” 
“Waiting Vs. Non-waiting Instructions” for a discussion of the no-wait instructions.)

If an unmasked numeric exception is pending from a preceding FPU instruction, a member o
no-wait class of instructions will, at the beginning of its execution, assert the FERR# pin in 
response to that exception just like other FPU instructions, but then, unlike the other FPU 
instructions, FERR# will be de-asserted. This de-assertion was implemented to allow the no
class of instructions to proceed without an interrupt due to any pending numeric exception. 
However, the brief assertion of FERR# is sufficient to latch the FPU exception request into m
hardware interface implementations (including Intel’s recommended circuit). 

All the FPU instructions are implemented such that during their execution, there is a window
which the processor will sample and accept external interrupts. If there is a pending interrup
processor services the interrupt first before resuming the execution of the instruction. 
Consequently, it is possible that the no-wait floating-point instruction may accept the externa
interrupt caused by it’s own assertion of the FERR# pin in the event of a pending unmasked
numeric exception, which is not an explicitly documented behavior of a no-wait instruction. T
process is illustrated in Figure 35-3.

Figure 35-2. Behavior of Signals During FPU Exception Handling

0F0H Address
   Decode
Intel Architecture Software Developer’s Manual 35-635

Intel Confidential
Modified on: 12/8/98, D:\Hyperbook\Pentium\SW Manual\fpuhandl.fm



Guidelines for Writing FPU Exception Handlers

ed in 
tering 
 next 
ns. 
ing the 
int 

 the 

ction 
 
 
ng 

e 
tions 
umeric 
ait 
the 

 

n of 

oint 
t, 
Figure 35-3 assumes that a floating-point instruction that generates a “deferred” error (as defin
the “Basic Rules: When FERR# Is Generated”), which asserts the FERR# pin only on encoun
the next floating-point instruction, causes an unmasked numeric exception. Assume that the
floating-point instruction following this instruction is one of the no-wait floating-point instructio
The FERR# pin is asserted by the processor to indicate the pending exception on encounter
no-wait floating-point instruction. After the assertion of the FERR# pin the no-wait floating-po
instruction opens a window where the pending external interrupts are sampled.

Then there are two cases possible depending on the timing of the receipt of the interrupt via
INTR pin (asserted by the system in response to the FERR# pin) by the processor.

There are two other ways, in addition to Case 1 above, in which a no-wait floating-point instru
can service a numeric exception inside its interrupt window. First, the first floating-point error
condition could be of the “immediate” category (as defined in “Basic Rules: When FERR# Is
Generated”) that asserts FERR# immediately. If the system delay before asserting INTR is lo
enough, relative to the time elapsed before the no-wait floating-point instruction, INTR can b
asserted inside the interrupt window for the latter. Second, consider two no-wait FPU instruc
in close sequence, and assume that a previous FPU instruction has caused an unmasked n
exception. Then if the INTR timing is too long for an FERR# signal triggered by the first no-w
instruction to hit the first instruction’s interrupt window, it could catch the interrupt window of 
second.

The possible malfunction of a no-wait FPU instruction explained above cannot happen if the
instruction is being used in the manner for which Intel originally designed it. The no-wait 
instructions were intended to be used inside the FPU exception handler, to allow manipulatio

Figure 35-3. Timing of Receipt of External Interrupt

Assertion of FERR#

Exception Generating
Floating-Point

Instruction

by the Processor

System

Assertion of INTR Pin
by the System

Case 1

Case 2

Start of the “No-Wait”
Floating-Point

Instruction

External Interrupt
Sampling Window

Window Closed

Dependent
Delay

Case 1 If the system responds to the assertion of FERR# pin by the no-wait floating-p
instruction via the INTR pin during this window then the interrupt is serviced firs
before resuming the execution of the no-wait floating-point instruction. 

Case 2 If the system responds via the INTR pin after the window has closed then the 
interrupt is recognized only at the next instruction boundary.
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the FPU before the error condition is cleared, without hanging the processor because of the FPU 
error condition, and without the need to assert IGNNE#. They will perform this function correctly, 
since before the error condition is cleared, the assertion of FERR# that caused the FPU error 
handler to be invoked is still active. Thus the logic that would assert FERR# briefly at a no-wait 
instruction causes no change since FERR# is already asserted. The no-wait instructions may also 
be used without problem in the handler after the error condition is cleared, since now they will not 
cause FERR# to be asserted at all.

If a no-wait instruction is used outside of the FPU exception handler, it may malfunction as 
explained above, depending on the details of the hardware interface implementation and which 
particular processor is involved. The actual interrupt inside the window in the no-wait instruction 
may be blocked by surrounding it with the instructions: PUSHFD, CLI, no-wait, then POPFD. 
(CLI blocks interrupts, and the push and pop of flags preserves and restores the original value of 
the interrupt flag.) However, if FERR# was triggered by the no-wait, its latched value and the PIC 
response will still be in effect. Further code can be used to check for and correct such a condition, if 
needed. “Considerations When FPU Shared Between Tasks”, discusses an important example of 
this type of problem and gives a solution.

35.2.2 MS-DOS* Compatibility Mode in the Pentium® Pro 
Processor

When bit NE=0 in CR0, the MS-DOS compatibility mode of the Pentium Pro processor provides 
FERR# and IGNNE# functionality that is almost identical to the Intel486 and Pentium processors. 
The same external hardware described in “Recommended External Hardware to Support the MS
DOS* Compatibility Mode”, is recommended for the Pentium Pro processor as well as the tw
previous generations. The only change to MS-DOS compatibility FPU exception handling wit
Pentium Pro processor is that all exceptions for all FPU instructions cause immediate error 
reporting. That is, FERR# is asserted as soon as the FPU detects an unmasked exception; t
no cases in which error reporting is deferred to the next FPU or WAIT instruction. (As is discu
in “Basic Rules: When FERR# Is Generated”, most exception cases in the Intel486 and Pen
processors are of the deferred type.)

Although FERR# is asserted immediately upon detection of an unmasked FPU error, this ce
does not mean that the requested interrupt will always be serviced before the next instruction
code sequence is executed. To begin with, the Pentium Pro processor executes several inst
simultaneously. There also will be a delay, which depends on the external hardware 
implementation, between the FERR# assertion from the processor and the responding INTR
assertion to the processor. Further, the interrupt request to the PICs (IRQ13) may be tempor
blocked by the operating system, or delayed by higher priority interrupts, and processor respo
INTR itself is blocked if the operating system has cleared the IF bit in EFLAGS.

However, just as with the Intel486 and Pentium processors, if the IGNNE# input is inactive, a
floating point exception which occurred in the previous FPU instruction and is unmasked cau
the processor to freeze immediately when encountering the next WAIT or FPU instruction (e
for no-wait instructions). This means that if the FPU exception handler has not already been
invoked due to the earlier exception (and therefore, the handler not has cleared that exceptio
from the FPU), the processor is forced to wait for the handler to be invoked and handle the 
exception, before the processor can execute another WAIT or FPU instruction. 

As explained in “No-Wait FPU Instructions Can Get FPU Interrupt in Window”, if a no-wait 
instruction is used outside of the FPU exception handler, in the Intel486 and Pentium proces
may accept an unmasked exception from a previous FPU instruction which happens to fall w
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 of two 
the external interrupt sampling window that is opened near the beginning of execution of all FPU 
instructions. This will not happen in the Pentium Pro processor, because this sampling window has 
been removed from the no-wait group of FPU instructions.

35.3 Recommended Protocol for MS-DOS* Compatibility 
Handlers

The activities of numeric programs can be split into two major areas: program control and 
arithmetic. The program control part performs activities such as deciding what functions to 
perform, calculating addresses of numeric operands, and loop control. The arithmetic part simply 
adds, subtracts, multiplies, and performs other operations on the numeric operands. The processor 
is designed to handle these two parts separately and efficiently. An FPU exception handler, if a 
system chooses to implement one, is often one of the most complicated parts of the program 
control code.

35.3.1 Floating-Point Exceptions and Their Defaults

The FPU can recognize six classes of floating-point exception conditions while executing floating-
point instructions:

1. #I — Invalid operation
    #IS — Stack fault
    #IA — IEEE standard invalid operation

2. #Z — Divide-by-zero

3. #D — Denormalized operand

4. #O — Numeric overflow

5. #U — Numeric underflow

6. #P — Inexact result (precision)

For complete details on these exceptions and their defaults, see “Floating-Point Exception 
Handling” and “Floating-Point Exception Conditions”.

35.3.2 Two Options for Handling Numeric Exceptions

Depending on options determined by the software system designer, the processor takes one
possible courses of action when a numeric exception occurs:

• The FPU can handle selected exceptions itself, producing a default fix-up that is reasonable in 
most situations. This allows the numeric program execution to continue undisturbed. Programs 
can mask individual exception types to indicate that the FPU should generate this safe, 
reasonable result whenever the exception occurs. The default exception fix-up activity is 
treated by the FPU as part of the instruction causing the exception; no external indication of 
the exception is given (except that the instruction takes longer to execute when it handles a 
masked exception.) When masked exceptions are detected, a flag is set in the numeric status 
register, but no information is preserved regarding where or when it was set.

• Alternatively, a software exception handler can be invoked to handle the exception. When a 
numeric exception is unmasked and the exception occurs, the FPU stops further execution of 
the numeric instruction and causes a branch to a software exception handler. The exception 
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handler can then implement any sort of recovery procedures desired for any numeric exception 
detectable by the FPU.

35.3.2.1 Automatic Exception Handling: Using Masked Exceptions

Each of the six exception conditions described above has a corresponding flag bit in the FPU status 
word and a mask bit in the FPU control word. If an exception is masked (the corresponding mask 
bit in the control word = 1), the processor takes an appropriate default action and continues with the 
computation. The processor has a default fix-up activity for every possible exception condition it 
may encounter. These masked-exception responses are designed to be safe and are generally 
acceptable for most numeric applications.

For example, if the Inexact result (Precision) exception is masked, the system can specify whether 
the FPU should handle a result that cannot be represented exactly by one of four modes of 
rounding: rounding it normally, chopping it toward zero, always rounding it up, or always down. If 
the Underflow exception is masked, the FPU will store a number that is too small to be represented 
in normalized form as a denormal (or zero if it’s smaller than the smallest denormal). Note th
when exceptions are masked, the FPU may detect multiple exceptions in a single instruction
because it continues executing the instruction after performing its masked response. For exa
the FPU could detect a denormalized operand, perform its masked response to this exceptio
then detect an underflow.

As an example of how even severe exceptions can be handled safely and automatically usin
default exception responses, consider a calculation of the parallel resistance of several value
only the standard formula (see Figure 35-4). If R1 becomes zero, the circuit resistance beco
zero. With the divide-by-zero and precision exceptions masked, the processor will produce th
correct result. FDIV of R1 into 1 gives infinity, and then FDIV of (infinity +R2 +R3) into 1 give
zero.

By masking or unmasking specific numeric exceptions in the FPU control word, programmer
delegate responsibility for most exceptions to the processor, reserving the most severe exce
for programmed exception handlers. Exception-handling software is often difficult to write, an
masked responses have been tailored to deliver the most reasonable result for each conditio
the majority of applications, masking all exceptions yields satisfactory results with the least 
programming effort. Certain exceptions can usefully be left unmasked during the debugging 
of software development, and then masked when the clean software is actually run. An inva
operation exception for example, typically indicates a program error that must be corrected.

Figure 35-4. Arithmetic Example Using Infinity

Equivalent Resistance =
1

1

R1

++

R1

1

R2

1

R3

R2 R3
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The exception flags in the FPU status word provide a cumulative record of exceptions that have 
occurred since these flags were last cleared. Once set, these flags can be cleared only by executing 
the FCLEX/FNCLEX (clear exceptions) instruction, by reinitializing the FPU with FINIT/FNINIT 
or FSAVE/FNSAVE, or by overwriting the flags with an FRSTOR or FLDENV instruction. This 
allows a programmer to mask all exceptions, run a calculation, and then inspect the status word to 
see if any exceptions were detected at any point in the calculation.

35.3.2.2 Software Exception Handling

If the FPU in or with an Intel Architecture processor (Intel 286 and onwards) encounters an 
unmasked exception condition, with the system operated in the MS-DOS compatibility mode and 
with IGNNE# not asserted, a software exception handler is invoked through a PIC and the 
processor’s INTR pin. The FERR# (or ERROR#) output from the FPU that begins the proces
invoking the exception handler may occur when the error condition is first detected, or when
processor encounters the next WAIT or FPU instruction. Which of these two cases occurs de
on the processor generation and also on which exception and which FPU instruction triggere
discussed earlier in “Origin of the MS-DOS* Compatibility Mode for Handling FPU Exception
and “Implementation of the MS-DOS* Compatibility Mode In the Intel486™, Pentium®, and 
Pentium Pro Processors”. The elapsed time between the initial error signal and the invocatio
the FPU exception handler depends of course on the external hardware interface, and also o
whether the external interrupt for FPU errors is enabled. But the architecture ensures that th
handler will be invoked before execution of the next WAIT or floating-point instruction since a
unmasked floating-point exception causes the processor to freeze just before executing suc
instruction (unless the IGNNE# input is active, or it is a no-wait FPU instruction). 

The frozen processor waits for an external interrupt, which must be supplied by external hard
in response to the FERR# (or ERROR#) output of the processor (or coprocessor), usually th
IRQ13 on the “slave” PIC, and then through INTR. Then the external interrupt invokes the 
exception handling routine. Note that if the external interrupt for FPU errors is disabled when
processor executes an FPU instruction, the processor will freeze until some other (enabled) 
interrupt occurs if an unmasked FPU exception condition is in effect. If NE = 0 but the IGNNE
input is active, the processor disregards the exception and continues. Error reporting via an e
interrupt is supported for MS-DOS compatibility. Chapter 17, Intel Architecture Compatibility of 
the Intel Architecture Software Developer’s Manual, Volume 3, contains further discussion of 
compatibility issues.

The references above to the ERROR# output from the FPU apply to the Intel 387 and Intel 287 
math coprocessors (NPX chips). If one of these coprocessors encounters an unmasked exception 
condition, it signals the exception to the Intel 286 or Intel386 processor using the ERROR# status 
line between the processor and the coprocessor. See “Origin of the MS-DOS* Compatibility Mode 
for Handling FPU Exceptions”, in this appendix, and Chapter 17, Intel Architecture Compatibility, 
in the Intel Architecture Software Developer’s Manual, Volume 3 for differences in FPU exception 
handling.

The exception-handling routine is normally a part of the systems software. The routine must clear 
(or disable) the active exception flags in the FPU status word before executing any floating point 
instructions that cannot complete execution when there is a pending floating point exception. 
Otherwise, the floating point instruction will trigger the FPU interrupt again, and the system will be 
caught in an endless loop of nested floating point exceptions, and hang. In any event, the routine 
must clear (or disable) the active exception flags in the FPU status word after handling them, and 
before IRET(D). Typical exception responses may include:

• Incrementing an exception counter for later display or printing.

• Printing or displaying diagnostic information (e.g., the FPU environment and registers).
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• Aborting further execution, or using the exception pointers to build an instruction that will run 
without exception and executing it.

Applications programmers should consult their operating system’s reference manuals for the 
appropriate system response to numerical exceptions. For systems programmers, some details on 
writing software exception handlers are provided in Chapter 5, Interrupt and Exception Handling, 
in the Intel Architecture Software Developer’s Manual, Volume 3, as well as in “FPU Exception 
Handling Examples”, in this appendix.

As discussed in “Recommended External Hardware to Support the MS-DOS* Compatibility 
Mode”, some early FERR# to INTR hardware interface implementations are less robust than
recommended circuit. This is because they depended on the exception handler to clear the F
exception interrupt request to the PIC (by accessing port 0F0H) before the handler causes FERR#
to be de-asserted by clearing the exception from the FPU itself. To eliminate the chance of a
problem with this early hardware, Intel recommends that FPU exception handlers always ac
port 0F0H before clearing the error condition from the FPU.

35.3.3 Synchronization Required for Use of FPU Exception 
Handlers

Concurrency or synchronization management requires a check for exceptions before letting 
processor change a value just used by the FPU. It is important to remember that almost any
numeric instruction can, under the wrong circumstances, produce a numeric exception. 

35.3.3.1 Exception Synchronization: What, Why and When

Exception synchronization means that the exception handler inspects and deals with the exc
in the context in which it occurred. If concurrent execution is allowed, the state of the proces
when it recognizes the exception is often not in the context in which it occurred. The processor 
may have changed many of its internal registers and be executing a totally different program 
time the exception occurs. If the exception handler cannot recapture the original context, it c
reliably determine the cause of the exception or to recover successfully from the exception. 
handle this situation, the FPU has special registers updated at the start of each numeric inst
to describe the state of the numeric program when the failed instruction was attempted. This
provides tools to help the exception handler recapture the original context, but the application
must also be written with synchronization in mind. Overall, exception synchronization must en
that the FPU and other relevant parts of the context are in a well defined state when the han
invoked after an unmasked numeric exception occurs. 

When the FPU signals an unmasked exception condition, it is requesting help. The fact that 
exception was unmasked indicates that further numeric program execution under the arithm
and programming rules of the FPU will probably yield invalid results. Thus the exception mu
handled, and with proper synchronization, or the program will not operate reliably.

For programmers in higher-level languages, all required synchronization is automatically pro
by the appropriate compiler. However, for assembly language programmers exception 
synchronization remains the responsibility of the programmer. It is not uncommon for a 
programmer to expect that their numeric program will not cause numeric exceptions after it h
been tested and debugged, but in a different system or numeric environment, exceptions ma
regularly nonetheless. An obvious example would be use of the program with some number
beyond the range for which it was designed and tested. The example in “Exception 
Synchronization Examples”, shows a more subtle way in which unexpected exceptions can oc
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As described in “Floating-Point Exceptions and Their Defaults”, depending on options determi
by the software system designer, the processor can perform one of two possible courses of 
when a numeric exception occurs.

• The FPU can provide a default fix-up for selected numeric exceptions. If the FPU performs its 
default action for all exceptions, then the need for exception synchronization is not manifest. 
However, code is often ported to contexts and operating systems for which it was not 
originally designed. The example below illustrates that it is safest to always consider 
exception synchronization when designing code that uses the FPU.

• Alternatively, a software exception handler can be invoked to handle the exception. When a 
numeric exception is unmasked and the exception occurs, the FPU stops further execution of 
the numeric instruction and causes a branch to a software exception handler. When an FPU 
exception handler will be invoked, synchronization must always be considered to assure 
reliable performance.

The following examples illustrate the need to always consider exception synchronization when 
writing numeric code, even when the code is initially intended for execution with exceptions 
masked.

35.3.3.2 Exception Synchronization Examples

In the following examples, three instructions are shown to load an integer, calculate its square root, 
then increment the integer. The synchronous execution of the FPU will allow both of these 
programs to execute correctly, with INC COUNT being executed in parallel in the processor, as 
long as no exceptions occur on the FILD instruction. However, if the code is later moved to an 
environment where exceptions are unmasked, the code in the first example will not work correctly:

Incorrect Error Synchronization

FILD COUNT ; FPU instruction
INC COUNT ; integer instruction alters operand
FSQRT ; subsequent FPU instruction -- error 

; from previous FPU instruction detected here
Proper Error Synchronization

FILD COUNT; FPU instruction
FSQRT ; subsequent FPU instruction -- error from 

; previous FPU instruction detected here
INC COUNT; integer instruction alters operand

In some operating systems supporting the FPU, the numeric register stack is extended to memory. 
To extend the FPU stack to memory, the invalid exception is unmasked. A push to a full register or 
pop from an empty register sets SF (Stack Fault flag) and causes an invalid operation exception. 
The recovery routine for the exception must recognize this situation, fix up the stack, then perform 
the original operation. The recovery routine will not work correctly in the first example shown in 
the figure. The problem is that the value of COUNT is incremented before the exception handler is 
invoked, so that the recovery routine will load an incorrect value of COUNT, causing the program 
to fail or behave unreliably.
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35.3.3.3 Proper Exception Synchronization in General

As explained in “Recommended External Hardware to Support the MS-DOS* Compatibility 
Mode”, if the FPU encounters an unmasked exception condition a software exception handle
invoked before execution of the next WAIT or floating-point instruction. This is because an 
unmasked floating-point exception causes the processor to freeze immediately before execu
such an instruction (unless the IGNNE# input is active, or it is a no-wait FPU instruction). Ex
when the exception handler will be invoked (in the interval between when the exception is de
and the next WAIT or FPU instruction) is dependent on the processor generation, the system
which FPU instruction and exception is involved. 

To be safe in exception synchronization, one should assume the handler will be invoked at t
of the interval. Thus the program should not change any value that might be needed by the h
(such as COUNT in the above example) until after the next FPU instruction following an FPU 
instruction that could cause an error. If the program needs to modify such a value before the
FPU instruction (or if the next FPU instruction could also cause an error), then a WAIT instru
should be inserted before the value is modified. This will force the handling of any exception
before the value is modified. A WAIT instruction should also be placed after the last floating-p
instruction in an application so that any unmasked exceptions will be serviced before the tas
completes.

35.3.4 FPU Exception Handling Examples

There are many approaches to writing exception handlers. One useful technique is to consid
exception handler procedure as consisting of “prologue,” “body,” and “epilogue” sections of c

In the transfer of control to the exception handler due to an INTR, NMI, or SMI, external interr
have been disabled by hardware. The prologue performs all functions that must be protected
possible interruption by higher-priority sources. Typically, this involves saving registers and 
transferring diagnostic information from the FPU to memory. When the critical processing ha
been completed, the prologue may re-enable interrupts to allow higher-priority interrupt hand
to preempt the exception handler. The standard “prologue” not only saves the registers and 
transfers diagnostic information from the FPU to memory but also clears the floating point 
exception flags in the status word. Alternatively, when it is not necessary for the handler to b
entrant, another technique may also be used. In this technique, the exception flags are not cle
the “prologue” and the body of the handler must not contain any floating point instructions th
cannot complete execution when there is a pending floating point exception. (The no-wait 
instructions are discussed in “Waiting Vs. Non-waiting Instructions”.) Note that the handler m
still clear the exception flag(s) before executing the IRET. If the exception handler uses neith
these techniques the system will be caught in an endless loop of nested floating point excep
and hang.

The body of the exception handler examines the diagnostic information and makes a respon
is necessarily application-dependent. This response may range from halting execution, to 
displaying a message, to attempting to repair the problem and proceed with normal executio
epilogue essentially reverses the actions of the prologue, restoring the processor so that nor
execution can be resumed. The epilogue must not load an unmasked exception flag into the 
another exception will be requested immediately.

The following code examples show the ASM386/486 coding of three skeleton exception han
with the save spaces given as correct for 32 bit protected mode. They show how prologues 
epilogues can be written for various situations, but the application dependent exception han
body is just indicated by comments showing where it should be placed.
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The first two are very similar; their only substantial difference is their choice of instructions to save 
and restore the FPU. The trade-off here is between the increased diagnostic information provided 
by FNSAVE and the faster execution of FNSTENV. (Also, after saving the original contents, 
FNSAVE re-initializes the FPU, while FNSTENV only masks all FPU exceptions.) For 
applications that are sensitive to interrupt latency or that do not need to examine register contents, 
FNSTENV reduces the duration of the “critical region,” during which the processor does not 
recognize another interrupt request. (See the “Saving the FPU’s State”, for a complete desc
of the FPU save image.)

After the exception handler body, the epilogues prepare the processor to resume execution fr
point of interruption (i.e., the instruction following the one that generated the unmasked 
exception). Notice that the exception flags in the memory image that is loaded into the FPU 
cleared to zero prior to reloading (in fact, in these examples, the entire status word image is 
cleared).

Examples 35-1 and 35-2 assume that the exception handler itself will not cause an unmaske
exception. Where this is a possibility, the general approach shown in Example 35-3 can be 
employed. The basic technique is to save the full FPU state and then to load a new control w
the prologue. Note that considerable care should be taken when designing an exception han
this type to prevent the handler from being reentered endlessly.

Example 35-1. Full-State Exception Handler

SAVE_ALL PROC
;
; SAVE REGISTERS, ALLOCATE STACK SPACE FOR FPU STATE IMAGE

PUSH EBP
.
.
MOV  EBP, ESP
SUB  ESP, 108 ; ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE FULL FPU STATE, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSAVE [EBP-108]
PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO STACK TOP
POPFD ; RESTORE IF TO VALUE BEFORE FPU EXCEPTION

;
; APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
;
; CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
; RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR [EBP-104], 0H
FRSTOR  [EBP-108]

; DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV  ESP, EBP
.
.
POP  EBP

;
; RETURN TO INTERRUPTED CALCULATION

IRETD 
SAVE_ALL  ENDP

Example 35-2. Reduced-Latency Exception Handler

SAVE_ENVIRONMENTPROC
;
; SAVE REGISTERS, ALLOCATE STACK SPACE FOR FPU ENVIRONMENT 

PUSH  EBP
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.
MOV  EBP, ESP
SUB  ESP, 28  ; ALLOCATES 28 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE ENVIRONMENT, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSTENV[EBP-28]
PUSH  [EBP + OFFSET_TO_EFLAGS]  ; COPY OLD EFLAGS TO STACK TOP
POPFD ; RESTORE IF TO VALUE BEFORE FPU EXCEPTION

;
; APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
;
; CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
; RESTORE MODIFIED ENVIRONMENT IMAGE

MOV  BYTE PTR [EBP-24], 0H
FLDENV  [EBP-28]

; DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV  ESP, EBP
.
.
POP  EBP

;
; RETURN TO INTERRUPTED CALCULATION

IRETD
SAVE_ENVIRONMENT ENDP

Example 35-3. Reentrant Exception Handle

.

.
LOCAL_CONTROL DW ? ; ASSUME INITIALIZED

.

.
REENTRANTPROC
;
; SAVE REGISTERS, ALLOCATE STACK SPACE FOR FPU STATE IMAGE

PUSH  EBP
.
.
MOV  EBP, ESP
SUB  ESP, 108  ; ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

; SAVE STATE, LOAD NEW CONTROL WORD, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSAVE  [EBP-108]
FLDCW  LOCAL_CONTROL
PUSH  [EBP + OFFSET_TO_EFLAGS]  ; COPY OLD EFLAGS TO STACK TOP
POPFD ; RESTORE IF TO VALUE BEFORE FPU EXCEPTION.
.
.

;
; APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE. AN UNMASKED EXCEPTION

; GENERATED HERE WILL CAUSE THE EXCEPTION HANDLER TO BE REENTERED.
; IF LOCAL STORAGE IS NEEDED, IT MUST BE ALLOCATED ON THE STACK.
;

.

.
; CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
; RESTORE MODIFIED STATE IMAGE

MOV  BYTE PTR [EBP-104], 0H
FRSTOR  [EBP-108]

; DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV  ESP, EBP
.
.
POP  EBP
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;
; RETURN TO POINT OF INTERRUPTION

IRETD
REENTRANT  ENDP

35.3.5 Need for Storing State of IGNNE# Circuit If Using FPU and 
SMM

The recommended circuit (see Figure 35-1) for MS-DOS compatibility FPU exception handling 
for Intel486 processors and beyond contains two flip flops. When the FPU exception handler 
accesses I/O port 0F0H it clears the IRQ13 interrupt request output from Flip Flop #1 and also 
clocks out the IGNNE# signal (active) from Flip Flop #2. The assertion of IGNNE# may be used 
by the handler if needed to execute any FPU instruction while ignoring the pending FPU errors. 
The problem here is that the state of Flip Flop #2 is effectively an additional (but hidden) status bit 
that can affect processor behavior, and so ideally should be saved upon entering SMM, and 
restored before resuming to normal operation. If this is not done, and also the SMM code saves the 
FPU state, AND an FPU error handler is being used which relies on IGNNE# assertion, then (very 
rarely) the FPU handler will nest inside itself and malfunction. The following example shows how 
this can happen.

Suppose that the FPU exception handler includes the following sequence:

FNSTSW  save_sw ; save the FPU status word 
; using a no-wait FPU instruction

OUT 0F0H, AL; clears IRQ13 & activates IGNNE#
    . . . .
FLDCW new_cw ; loads new CW ignoring FPU errors, 

; since IGNNE# is assumed active; or any 
; other FPU instruction that is not a no-wait 
; type will cause the same problem

     . . . .
FCLEX ; clear the FPU error conditions & thus turn off FERR# & reset the IGNNE# FF

The problem will only occur if the processor enters SMM between the OUT and the FLDCW 
instructions. But if that happens, AND the SMM code saves the FPU state using FNSAVE, then the 
IGNNE# Flip Flop will be cleared (because FNSAVE clears the FPU errors and thus de-asserts 
FERR#). When the processor returns from SMM it will restore the FPU state with FRSTOR, which 
will re-assert FERR#, but the IGNNE# Flip Flop will not get set. Then when the FPU error handler 
executes the FLDCW instruction, the active error condition will cause the processor to re-enter the 
FPU error handler from the beginning. This may cause the handler to malfunction.

To avoid this problem, Intel recommends two measures:

1. Do not use the FPU for calculations inside SMM code. (The normal power management, and 
sometimes security, functions provided by SMM have no need for FPU calculations; if they 
are needed for some special case, use scaling or emulation instead.) This eliminates the need to 
do FNSAVE/FRSTOR inside SMM code, except when going into a 0 V suspend state (in 
which, in order to save power, the CPU is turned off completely, requiring its complete state to 
be saved.)

2. The system should not call upon SMM code to put the processor into 0 V suspend while the 
processor is running FPU calculations, or just after an interrupt has occurred. Normal power 
management protocol avoids this by going into power down states only after timed intervals in 
which no system activity occurs.
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35.3.6 Considerations When FPU Shared Between Tasks

The Intel Architecture allows speculative deferral of floating point state swaps on task switches. 
This feature allows postponing an FPU state swap until an FPU instruction is actually encountered 
in another task. Since kernel tasks rarely use floating point, and some applications do not use 
floating point or use it infrequently, the amount of time saved by avoiding unnecessary stores of the 
floating point state is significant. Speculative deferral of FPU saves does, however, place an extra 
burden on the kernel in three key ways:

1. The kernel must keep track of which thread owns the FPU, which may be different from the 
currently executing thread.

2. The kernel must associate any floating point exceptions with the generating task. This requires 
special handling since floating point exceptions are delivered asynchronous with other system 
activity.

3. There are conditions under which spurious floating point exception interrupts are generated, 
which the kernel must recognize and discard.

35.3.6.1 Speculatively Deferring FPU Saves, General Overview

In order to support multi-tasking, each thread in the system needs a save area for the general 
purpose registers, and each task that is allowed to use floating point needs an FPU save area large 
enough to hold the entire FPU stack and associated FPU state such as the control word and status 
word. (See “Saving the FPU’s State”, for a complete description of the FPU save image.)

On a task switch, the general purpose registers are swapped out to their save area for the 
suspending thread, and the registers of the resuming thread are loaded. The FPU state doe
need to be saved at this point. If the resuming thread does not use the FPU before it is itself
suspended, then both a save and a load of the FPU state has been avoided. It is often the c
several threads may be executed without any usage of the FPU.

The processor supports speculative deferral of FPU saves via interrupt 7 “Device Not Availa
(DNA), used in conjunction with CR0 bit 3, the “Task Switched” bit (TS). (See “Control Regist
in Chapter 2 of the Intel Architecture Software Developer’s Manual, Volume 3.) Every task switch 
via the hardware supported task switching mechanism (see “Task Switching” in Chapter 6 of
Intel Architecture Software Developer’s Manual, Volume 3) sets TS. Multi-threaded kernels that 
use software task switching1 can set the TS bit by reading CR0, ORing a “1” into2 bit 3, and writing 
back CR0. Any subsequent floating point instructions (now being executed in a new thread 
context) will fault via interrupt 7 before execution. This allows a DNA handler to save the old
floating point context and reload the FPU state for the current thread. The handler should cle
TS bit before exit using the CLTS instruction. On return from the handler the faulting thread w
proceed with its floating point computation.

Some operating systems save the FPU context on every task switch, typically because they
change the linear address space between tasks. The problem and solution discussed in the 
following sections apply to these operating systems also.

1. In a software task switch, the operating system uses a sequence of instructions to save the suspending thread’s state and restore the resuming 
thread’s state, instead of the single long non-interruptible task switch operation provided by the Intel Architecture.

2. Although CR0, bit 2, the emulation flag (EM), also causes a DNA exception, do not use the EM bit as a surrogate for TS. EM means tha
no floating point unit is available and that floating point instructions must be emulated. Using EM to trap on task switches is not compatible 
with the Intel Architecture’s MMX™ technology. If the EM flag is set, MMX instructions raise the invalid opcode exception.
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35.3.6.2 Tracking FPU Ownership

Since the contents of the FPU may not belong to the currently executing thread, the thread 
identifier for the last FPU user needs to be tracked separately. This is not complicated; the kernel 
should simply provide a variable to store the thread identifier of the FPU owner, separate from the 
variable that stores the identifier for the currently executing thread. This variable is updated in the 
DNA exception handler, and is used by the DNA exception handler to find the FPU save areas of 
the old and new threads. A simplified flow for a DNA exception handler is then:

1. Use the “FPU Owner” variable to find the FPU save area of the last thread to use the FP

2. Save the FPU contents to the old thread’s save area, typically using an FNSAVE instruc

3. Set the FPU Owner variable to the identify the currently executing thread.

4. Reload the FPU contents from the new thread’s save area, typically using an FRSTOR 
instruction.

5. Clear TS using the CLTS instruction and exit the DNA exception handler.

While this flow covers the basic requirements for speculatively deferred FPU state swaps, the
some additional subtleties that need to be handled in a robust implementation.

35.3.6.3 interaction of FPU State Saves and Floating Point Exception 
Association

Recall these key points from earlier in this document: When considering floating point excep
across all implementations of the Intel Architecture, and across all floating point instructions,
floating point exception can be initiated from any time during the excepting floating point 
instruction, up to just before the next floating point instruction. The “next” floating point 
instruction may be the FNSAVE used to save the FPU state for a task switch. In the case of 
wait:” instructions such as FNSAVE, the interrupt from a previously excepting instruction (NE
case) may arrive just before the no-wait instruction, during, or shortly thereafter with a syste
dependent delay. Note that this implies that an floating point exception might be registered d
the state swap process itself, and the kernel and floating point exception interrupt handler m
prepared for this case.

A simple way to handle the case of exceptions arriving during FPU state swaps is to allow th
kernel to be one of the FPU owning threads. A reserved thread identifier is used to indicate k
ownership of the FPU. During an floating point state swap, the “FPU owner” variable should b
to indicate the kernel as the current owner. At the completion of the state swap, the variable 
be set to indicate the new owning thread. The numeric exception handler needs to check the
owner and discard any numeric exceptions that occur while the kernel is the FPU owner. A m
general flow for a DNA exception handler that handles this case is shown in Figure 35-5.

Numeric exceptions received while the kernel owns the FPU for a state swap must be discar
the kernel without being dispatched to a handler. A flow for a numeric exception dispatch rout
shown in Figure 35-6.

It may at first glance seem that there is a possibility of floating point exceptions being lost be
of exceptions that are discarded during state swaps. This is not the case, as the exception w
issued when the floating point state is reloaded. Walking through state swaps both with and w
pending numeric exceptions will clarify the operation of these two handlers.

Case #1: FPU State Swap Without Numeric Exception
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Assume two threads A and B, both using the floating point unit. Let A be the thread to have most 
recently executed a floating point instruction, with no pending numeric exceptions. Let B be the 
currently executing thread. CR0.TS was set when thread A was suspended. When B starts to 
execute a floating point instruction the instruction will fault with the DNA exception because TS is 
set.

At this point the handler is entered, and eventually it finds that the current FPU Owner is not the 
currently executing thread. To guard the FPU state swap from extraneous numeric exceptions, the 
FPU Owner is set to be the kernel. The old owner’s FPU state is saved with FNSAVE, and th
current thread’s FPU state is restored with FRSTOR. Before exiting, the FPU owner is set to 
B, and the TS bit is cleared.

On exit, thread B resumes execution of the faulting floating point instruction and continues.

Case #2: FPU State Swap with Discarded Numeric Exception

Again, assume two threads A and B, both using the floating point unit. Let A be the thread to
most recently executed a floating point instruction, but this time let there be a pending nume
exception. Let B be the currently executing thread. When B starts to execute a floating point
instruction the instruction will fault with the DNA exception and enter the DNA handler. (If bo
numeric and DNA exceptions are pending, the DNA exception takes precedence, in order to
support handling the numeric exception in its own context.)

Figure 35-5. General Program Flow for DNA Exception Handler

DNA Handler Entry

Current Thread
same as

FPU Owner?

FPU Owner := Kernel

FNSAVE to Old Thread’s
FP Save Area

(may cause numeric exception)

<other handler set up code>

<other handler code>

FPU Owner := Current Thread

FRSTOR from Current Thread’s
FP Save Area

CLTS (clears CR0.TS)

Exit DNA Handler

No

Yes

<handler final clean-up>
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When the FNSAVE starts, it will trigger an interrupt via FERR# because of the pending numeric 
exception. After some system dependent delay, the numeric exception handler is entered. It may be 
entered before the FNSAVE starts to execute, or it may be entered shortly after execution of the 
FNSAVE. Since the FPU Owner is the kernel, the numeric exception handler simply exits, 
discarding the exception. The DNA handler resumes execution, completing the FNSAVE of the old 
floating point context of thread A and the FRSTOR of the floating point context for thread B.

Thread A eventually gets an opportunity to handle the exception that was discarded during the task 
switch. After some time, thread B is suspended, and thread A resumes execution. When thread A 
starts to execute an floating point instruction, once again the DNA exception handler is entere
FPU state is Finessed, and A’s FPU state is Frustrate. Note that in restoring the FPU state fr
save area, the pending numeric exception flags are reloaded in to the floating point status w
Now when the DNA exception handler returns, thread A resumes execution of the faulting flo
point instruction just long enough to immediately generate a numeric exception, which now g
handled in the normal way. The net result is that the task switch and resulting FPU state swa
the DNA exception handler causes an extra numeric exception which can be safely discarde

35.3.6.4 Interrupt Routing From the Kernel

In MS-DOS, an application that wishes to handle numeric exceptions hooks interrupt 16 by pl
its handler address in the interrupt vector table, and exiting via a jump to the previous interru
handler. Protected mode systems that run MS-DOS programs under a subsystem can emula
exception delivery mechanism. For example, assume a protected mode O.S. that runs wit
CR.NE = 1, and that runs MS-DOS programs in a virtual machine subsystem. The MS-DO
program is set up in a virtual machine that provides a virtualized interrupt table. The MS-DO
application hooks interrupt 16 in the virtual machine in the normal way. A numeric exception
trap to the kernel via the real INT 16 residing in the kernel at ring 0. The INT 16 handler in th
kernel then locates the correct MS-DOS virtual machine, and reflects the interrupt to the virt
machine monitor. The virtual machine monitor then emulates an interrupt by jumping through
address in the virtualized interrupt table, eventually reaching the application’s numeric excep
handler.

Figure 35-6. Program Flow for a Numeric Exception Dispatch Routine

Numeric Exception Entry

Is Kernel
FPU Owner?

Normal Dispatch to
Numeric Exception Handler Exit

No

Yes
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35.4 Differences For Handlers Using Native Mode

The 8087 has a pin INT which it asserts when an unmasked exception occurs. But there is no 
interrupt input pin in the 8086 or 8088 dedicated to its attachment, nor an interrupt vector number 
in the 8086 or 8088 specific for an FPU error assertion. But beginning with the Intel 286 and Intel 
287 hardware connections were dedicated to support the FPU exception, and interrupt vector 16 
assigned to it.

35.4.1 Origin With the Intel 286 and Intel 287, and Intel386™ and 
Intel 387 Processors

The Intel 286 and Intel 287, and Intel386 and Intel 387 processor/coprocessor pairs are each 
provided with ERROR# pins that are recommended to be connected between the processor and 
FPU. If this is done, when an unmasked FPU exception occurs, the FPU records the exception, and 
asserts its ERROR# pin. The processor recognizes this active condition of the ERROR# status line 
immediately before execution of the next WAIT or FPU instruction (except for the no-wait type) in 
its instruction stream, and branches to the routine at interrupt vector 16. Thus an FPU exception 
will be handled before any other FPU instruction (after the one causing the error) is executed 
(except for no-wait instructions, which will be executed without triggering the FPU exception 
interrupt, but it will remain pending).

Using the dedicated interrupt 16 for FPU exception handling is referred to as the native mode. It is 
the simplest approach, and the one recommended most highly by Intel.

35.4.2 Changes with Intel486™, Pentium  and Pentium  Pro 
Processors with CR0.NE=1

With these latest three generations of the Intel Architecture, more enhancements and speedup 
features have been added to the corresponding FPUs. Also, the FPU is now built into the same chip 
as the processor, which allows further increases in the speed at which the FPU can operate as part 
of the integrated system. This also means that the native mode of FPU exception handling, selected 
by setting bit NE of register CR0 to 1, is now entirely internal.

If an unmasked exception occurs during an FPU instruction, the FPU records the exception 
internally, and triggers the exception handler through interrupt 16 immediately before execution of 
the next WAIT or FPU instruction (except for no-wait instructions, which will be executed as 
described in “Origin With the Intel 286 and Intel 287, and Intel386™ and Intel 387 Processors

An unmasked numerical exception causes the FERR# output to be activated even with NE=
at exactly the same point in the program flow as it would have been asserted if NE were zero
However, the system would not connect FERR# to a PIC to generate INTR when operating 
native, internal mode. (If the hardware of a system has FERR# connected to trigger IRQ13 in
to support MS-DOS, but an O/S using the native mode is actually running the system, it is th
S’s responsibility to make sure that IRQ13 is not enabled in the slave PIC.) With this configur
a system is immune to the problem discussed in “No-Wait FPU Instructions Can Get FPU Inte
in Window”, where for Intel486 and Pentium processors a no-wait FPU instruction can get an
exception.
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35.4.3 Considerations When FPU Shared Between Tasks Using 
Native Mode

The protocols recommended in “Considerations When FPU Shared Between Tasks”, for MS-DO
compatibility FPU exception handlers that are shared between tasks may be used without ch
with the native mode. However, the protocols for a handler written specifically for native mode
be simplified, because the problem of a spurious floating point exception interrupt occurring 
the kernel is executing cannot happen in native mode. 

The problem as actually found in practical code in a MS-DOS compatibility system happens 
the DNA handler uses FNSAVE to switch FPU contexts. If an FPU exception is active, then 
FNSAVE triggers FERR# briefly, which usually will cause the FPU exception handler to be 
invoked inside the DNA handler. In native mode, neither FNSAVE nor any other no-wait 
instructions can trigger interrupt 16. (As discussed above, FERR# gets asserted independen
value of the NE bit, but when NE=1, the O/S should not enable its path through the PIC.) An
possible (very rare) way a floating point exception interrupt could occur while the kernel is 
executing is by an FPU immediate exception case having its interrupt delayed by the externa
hardware until execution has switched to the kernel. This also cannot happen in native mode
because there is no delay through external hardware.

Thus the native mode FPU exception handler can omit the test to see if the kernel is the FPU
owner, and the DNA handler for a native mode system can omit the step of setting the kernel
FPU owner at the handler’s beginning. Since however these simplifications are minor and sa
little code, it would be a reasonable and conservative habit (as long as the MS-DOS compat
mode is widely used) to include these steps in all systems.

Note that the special DP (Dual Processing) mode for Pentium Processors, and also the mor
general Intel MultiProcessor Specification for systems with multiple Pentium or Pentium Pro 
processors, support FPU exception handling only in the native mode. Intel does not recomm
using the MS-DOS compatibility mode for systems using more than one processor.
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